Приложение № 12 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2337

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Термометры цифровые RGK моделей СТ-11, СТ-12

Назначение средства измерений

Термометры цифровые RGK моделей CT-11, CT-12 (далее по тексту – термометры или приборы) в комплекте с внешними преобразователями термоэлектрическими (далее – термопары, ТП или зонды) предназначены для измерений температуры жидких, газообразных, сыпучих сред, а также для измерений температуры поверхности твердых тел.

Описание средства измерений

Принцип действия приборов основан на измерении сигналов (термо-ЭДС), поступающих в электронный блок термометра от внешних ТП, пропорциональных измеряемой температуре.

Термометры являются портативными микропроцессорными приборами и состоят из электронного блока с автономным питанием и подключаемых к нему сменных преобразователей термоэлектрических с номинальной статической характеристики (HCX) типа «К» или «Ј» по ГОСТ Р 8.585-2001.

Термометры цифровые RGK моделей CT-11, CT-12 различаются между собой количеством измерительных каналов (1 измерительный канал у модели CT-11 и 2 измерительных канала у CT-12).

Термометры могут работать в комплекте со следующими моделями внешних преобразователей термоэлектрических (зондов): TR-01S, TR-10A, TR-10S, TR-10W, которые различаются по метрологическим и техническим характеристикам, а также по конструктивному исполнению.

Преобразователь термоэлектрический модели TR-01S используется для измерений температуры жидких, газообразных, сыпучих сред и состоит из ЧЭ (с открытым рабочим спаем), помещенного в гибкую защитную оболочку со штекерным соединением с плоскими разъемами.

Преобразователь термоэлектрический модели TR-10W предназначен для измерений температуры жидких, газообразных, полутвёрдых, сыпучих сред и состоит из: ЧЭ, помещенного в защитную оболочку из нержавеющей стали, соединенную с пластиковой ручкой-держателем, а также удлинительных термоэлектродных проводов в гибкой спиралевидной оболочке со штекерным соединением с плоскими разъемами.

Преобразователь термоэлектрический модели TR-10A предназначен для измерений температуры газообразных сред и состоит из: ЧЭ (с открытым рабочим спаем), помещенного в защитную арматуру в виде пустотелого цилиндрического перфорированного наконечника, приваренного к защитной оболочке зонда (из нержавеющей стали), соединенной с пластиковой ручкой-держателем, а также удлинительных термоэлектродных проводов в гибкой спиралевидной оболочке со штекерным соединением с плоскими разъемами.

Преобразователь термоэлектрический модели TR-10S предназначен для измерений температуры поверхностей твердых тел и состоит из: ЧЭ, помещенного в защитную арматуру в виде цилиндрического наконечника с подпружиненной контактной площадкой, соединенного с защитной оболочкой зонда (из нержавеющей стали) с пластиковой ручкой-держателем, а также удлинительных термоэлектродных проводов в спиралевидной защитной оболочке со штекерным соединением с плоскими разъемами.

Фотографии общего вида термометров и зондов приведены на рисунках 1-6. Цветовая гамма корпусов термометров может быть изменена по решению Изготовителя в одностороннем порядке.

Пломбирование приборов не предусмотрено.

Рисунок 1 — Общий вид термометров модели CT-11

Рисунок 2 – Общий вид термометров модели CT-12

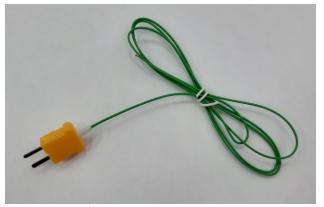


Рисунок 3 – Общий вид термопары модели TR-01S

Рисунок 4 – Общий вид зонда модели TR-10W

Рисунок 5 - Общий вид зонда модели TR-10A

Рисунок 6 - Общий вид зонда модели TR-10S

Программное обеспечение

Программное обеспечение (ΠO) термометров состоит из встроенного, метрологически значимого ΠO .

Данное ПО устанавливается на предприятии-изготовителе во время производственного цикла в микропроцессор, расположенный внутри корпуса термометра на электронной плате.

В соответствии с п. 4.3 рекомендации по метрологии Р 50.2.077-2014 конструкция термометра исключает возможность несанкционированного влияния на ПО и измерительную информацию. ПО недоступно пользователю и не подлежит изменению на протяжении всего времени функционирования изделия.

В соответствии с п. 4.5 рекомендации по метрологии Р 50.2.077-2014 уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений – «высокий».

Идентификационные данные встроенного ПО – отсутствуют.

Метрологические и технические характеристики

Метрологические и основные технические характеристики термометров моделей СТ-11, СТ-12 приведены в таблицах 1, 2.

Метрологические и основные технические характеристики ТП моделей TR-01S, TR-10A, TR-10S, TR-10W приведены в таблицах 3, 4.

 Таблина 1 - Метрологические характеристики термометров молелей СТ-11. СТ-12

таолица 1 - Метрологические характеристики термометров моделей СТ-11, СТ-12			
Наименование характеристики	Значение		
	(в зависимости от модели термометра) $^{(1)}$		
Параметры	CT-11	CT-12	
Диапазон измерений температуры (в зависимости			
от типа HCX TП), °C:			
- для типа «К»	от -50 до +1300;		
- для типа «J»	от -50 до +1200		
Пределы допускаемой абсолютной погрешности	$\pm (1+0,003\cdot t),$		
измерений температуры (только для электронного	где t - значение измеряемой температуры		
блока), °С ⁽²⁾	°C		
Разрешающая способность (цена единицы	0,1		
младшего разряда) дисплея прибора, °С			

Наименование характеристики	Значение		
	(в зависимости от модели термометра) $^{(1)}$		
Параметры	CT-11	CT-12	

Примечание:

- (1) Допускается использование термометров в диапазонах измерений температуры, согласованных с пользователем, но лежащих внутри полного диапазона измерений температуры
- $^{(2)}$ Пределы допускаемой суммарной абсолютной погрешности термометров в комплекте с ТП (Δ , °C) вычисляются по формуле:

$$\Delta = \pm \sqrt{(\Delta_{\rm 6\pi o K})^2 + (\Delta_{\rm TII})^2},$$

где: $\Delta_{\text{блок}}$ - предел допускаемой абсолютной погрешности измерений температуры электронного блока, °С;

 $\Delta_{\text{ТП}}$ - предел допускаемого отклонения ТЭДС ТП от HCX, °C.

Таблица 2 - Основные технические характеристики термометров моделей СТ-11, СТ-12

Havitava pavva vanavanavanvanvan	Значение		
Наименование характеристики	(в зависимости от модели термометра)		
Параметры	CT-11	CT-12	
Количество измерительных каналов	1	2	
Разрешающая способность дисплея прибора, °C	0,1		
Масса, г, не более	82		
Габаритные размеры, мм	120×53×28		
Напряжение питания, В	4,5 (3 алкалиновые батареи типа ААА)		
Средний срок службы, лет, не менее	8		
Средняя наработка до отказа, ч, не менее	40000		
Рабочие условия эксплуатации:			
- температура окружающего воздуха, °С	от 0 до +40		
- относительная влажность воздуха, %, не более	80		

Таблица 3 - Метрологические характеристики ТП моделей TR-01S, TR-10A, TR-10S, TR-10W

Обозначение модели ТП	Условное обозначение номинальной статической характеристики ЧЭ ТП по ГОСТ Р 8.585-2001 (МЭК 60584-1:2013)	Диапазон измерений температуры (1), °C	Пределы допускаемого отклонения ТЭДС ТП от НСХ, °С
TR-01S	К	от -40 до +260	±1,5
TR-10A	К	от -40 до +200	$\pm (1+0,005\cdot t),$ где t - значение измеряемой температуры, $^{\circ}$ С
TR-10S	К	от -40 до +500	$\pm 2,0$ (в диапазоне от -40 до 0 °C включ.); $\pm (2+0,01\cdot t)$ (в остальном диапазоне)
TR-10W	К	от -40 до +400	$\pm 2,0$ (в диапазоне от -40 до 0 °C включ.); $\pm (1+0,005\cdot t)$ (в остальном диапазоне)

Примечание:

^{(1) —} Допускается использование ТП в диапазонах измерений температуры, согласованных с пользователем, но лежащих внутри полного диапазона измерений ТП;

Таблица 4 - Основные технические характеристики ТП моделей TR-01S, TR-10A, TR-10S, TR-10W

	Значение			
Наименование характеристики	(в зависимости от модели ТП)			
	TR-01S	TR-10S	TR-10A	TR-10W
Общая длина зонда (без кабеля), мм	1020	255	305	315
Длина металлической части зонда, мм	-	125	170	180
Длина наконечника зонда, мм	-	28	32	-
Диаметр металлической части зонда, мм	-	6	5	3,2
Диаметр наконечника зонда, мм	-	15	6	-
Габаритные размеры прилегающей к				
поверхности подпружиненной площадки	-	14×6	-	-
наконечника зонда, мм				
Длина кабеля зонда, мм		от 450 до 1000 (при нормальном		
	_	растяжении)		
Масса зонда, г, не более	7	100	105	90

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом или методом штемпелевания, а также на тыльную сторону корпуса прибора при помощи наклейки.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование и обозначение	Количество	Примечание	
Термометр цифровой RGK	1 шт.	модель в соответствии с заказом	
ТП модели TR-01S	1 или 2 шт.	2 шт. для модели СТ-12	
Батарея питания	3 шт.	тип «ААА», 1,5 В	
Методика поверки МП 207-030-2020	1 экз.	на партию термометров,	
	1 3K3.	поставляемых в один адрес	
Руководство по эксплуатации	1 экз.	на русском языке	
По дополнительному заказу: ТП моделей TR-10A, TR-10S, TR-10W			

Поверка

осуществляется в соответствии с документом МП 207-030-2020 «ГСИ. Термометры цифровые RGK моделей СТ-11, СТ-12. Методика поверки», утвержденным ФГУП «ВНИИМС» 19.06.2020г.

Основные средства поверки:

Рабочий эталон 3-го разряда по ГОСТ 8.558-2009 — термометр сопротивления эталонный ЭТС-100 (Регистрационный номер в Федеральном информационном фонде 19916-10);

Измеритель температуры многоканальный прецизионный МИТ 8 (Регистрационный номер в Федеральном информационном фонде 19736-11);

Эталон единицы постоянного электрического напряжения 3-го разряда в соответствии с приказом Росстандарта от 30.12.2019г. № 3457 - Калибратор многофункциональный и коммуникатор BEAMEX MC6 (-R) (Регистрационный номер в Федеральном информационном фонде 52489-13);

Термостаты жидкостные TEPMOTECT (Регистрационный номер в Федеральном информационном фонде 39300-08);

Калибратор температуры поверхностный КТП-2 (Регистрационный номер в Федеральном информационном фонде 53247-13);

Калибратор температуры поверхностный КТП-500 (Регистрационный номер в Федеральном информационном фонде 21590-06);

Калибраторы температуры JOFRA серий ATC-R и RTC-R (Регистрационный номер в Федеральном информационном фонде 46576-11).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений отсутствуют.

Нормативные и технические документы, устанавливающие требования к термометрам цифровым RGK моделей CT-11, CT-12

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

Международный стандарт МЭК 60584-1:2013 Термопары. Часть 1. Градуировочные таблицы и допуски.

Приказ Федерального агентства по техническому регулированию и метрологии от 30.12.2019 г. № 3457 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы».

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.

Техническая документация фирмы-изготовителя.

Изготовитель

Фирма «UNI-TREND TECHNOLOGY (CHINA) CO., LTD», Китай

Адрес: No 6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial

Development Zone, Dongguan City, Guangdong Province, China

Тел./факс: 86(0769)85723888 / 86(0769)8572588

Web-сайт: www.uni-trend.com

Заявитель

Общество с ограниченной ответственностью «Центр Промышленного Инструмента» (ООО «ЦПИ»)

ИНН 7713458808

Адрес: 127474 г. Москва, Дмитровское шоссе, 60, этаж 6, комната 613

Тел./факс: +7 (495) 137-90-66 E-mail: info@tool-centr.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: +7 (495) 437-55-77 / 437-56-66

Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.